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Figure 1: Our adaptive simulation framework allows us to efficiently simulate highly detailed splashes on large open surfaces. In this case,
maximum BCC mesh resolutions from 8 to 1024 cells were used, leading to strong horizontal grading along the surface.

Abstract

We introduce a new method for efficiently simulating liquid with
extreme amounts of spatial adaptivity. Our method combines sev-
eral key components to drastically speed up the simulation of large-
scale fluid phenomena: We leverage an alternative Eulerian tetra-
hedral mesh discretization to significantly reduce the complexity of
the pressure solve while increasing the robustness with respect to el-
ement quality and removing the possibility of locking. Next, we en-
able subtle free-surface phenomena by deriving novel second-order
boundary conditions consistent with our discretization. We cou-
ple this discretization with a spatially adaptive Fluid-Implicit Parti-
cle (FLIP) method, enabling efficient, robust, minimally-dissipative
simulations that can undergo sharp changes in spatial resolution
while minimizing artifacts. Along the way, we provide a new
method for generating a smooth and detailed surface from a set of
particles with variable sizes. Finally, we explore several new sizing
functions for determining spatially adaptive simulation resolutions,
and we show how to couple them to our simulator. We combine
each of these elements to produce a simulation algorithm that is
capable of creating animations at high maximum resolutions while
avoiding common pitfalls like inaccurate boundary conditions and
inefficient computation.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation; I.3.5 [Computer Graphics]:
Computational Geometry and Object Modeling—Physically based
modeling

Keywords: fluid simulation, tetrahedral discretization, adaptivity

∗E-mail:and@verygood.aid.design.kyushu-u.ac.jp
†E-mail:nils.thuerey@scanlinevfx.com
‡E-mail:wojtan@ist.ac.at

Links: DL PDF

1 Introduction

This paper aims to produce fluid simulations with a high degree of
spatial adaptivity. We desire to enable a simulator to focus its com-
putational resources on the visually interesting regions of a fluid
flow, while remaining computationally efficient and avoiding com-
mon artifacts due to a spatially adaptive pressure solve.

Previous approaches have made great strides towards this goal, but
they often exhibit visual artifacts, a lack of computational robust-
ness, or an unacceptably hefty computational expense. The ground-
breaking work of Losasso et al. [2004] introduced an octree for
spatial adaptivity, but it suffers from spurious flows at T-junctions.
Finite volume methods [Batty et al. 2010] repair these spatial arti-
facts at the expense of solving a significantly larger system of equa-
tions and sacrificing computational stability near poorly-shaped el-
ements. Furthermore, many existing methods still are not truly spa-
tially adaptive in the sense that their computational complexity is
still tied to a uniform grid or spatial parameter.

We introduce a combination of techniques that successfully makes
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adaptive fluid simulation practical at large scales. We first reduce
memory and computational costs by switching from a finite volume
method to a discretization with a significantly smaller linear sys-
tem for the pressure solve, which has the side effect of increasing
the simulator’s robustness to poor-quality elements and effectively
preventing locking artifacts. We next derive second-order Dirich-
let boundary conditions consistent with our discretization to benefit
from the subtle surface dynamics associated with an accurate pres-
sure solve. We combine this robust and efficient tetrahedral mesh-
based fluid simulator with a spatially adaptive method for sampling
particles for FLIP-based velocity advection, giving us a method free
from any single spatial resolution.

In addition to our adaptive FLIP simulator, we also introduce a new
method for computing a surface from a distribution of particles
with variable radii. We found that this method out-performs pre-
vious methods in cases of extreme spatial adaptivity by exhibiting
smoother surfaces without sacrificing detail.

Our fluid simulator works well with spatially adaptive tetrahedral
meshes, but it is another question to decide exactly how these adap-
tive meshes should be generated. We investigate various methods
for generating these adaptive meshes by experimenting with several
sizing functions, allowing us to precisely dictate where simulation
detail should occur. Some examples are a surface curvature-based
metric that adds detail only where needed on the fluid surface, a
turbulence metric that adds detail only where interesting fluid mo-
tion occurs, and a visibility metric that adds detail only in front of
a virtual camera.

Concretely, the contributions of our work are:
• a novel tetrahedral discretization of the pressure projection

step that is efficient to solve and robust to poor-quality ele-
ments;

• an accurate treatment of second-order boundary conditions
within the tetrahedral mesh;

• a new technique for extracting a smooth surface from particles
with varying radii;

• and the inclusion of a flexible sizing function to focus compu-
tational resources on important areas of the flow with minimal
overhead.

These contributions work together to produce a practical fluid sim-
ulator that exhibits low computational and memory complexity,
fewer visual artifacts, and a high effective simulation resolution.

2 Related Work

Our work is based on the Fluid-Implicit Particle (FLIP) method
introduced to the computer graphics community by Zhu and Brid-
son [2005], which arguably represents the state-of the art for de-
tailed and robust liquid simulations. The algorithm still follows
the general ideas of the Stable Fluid solver [Stam 1999], and can
be readily combined with second-order treatment of free surface
boundary conditions [Enright et al. 2003]. FLIP derives its success
from the fact that it uses particles to compute an accurate, non-
diffusive transport of flow quantities, in combination with a grid-
based solve to accurately enforce constraints for mass conservation.
The FLIP algorithm is heavily used in the special effects industry,
and recent advances have introduced accurate coupling with obsta-
cles [Batty et al. 2007], highly viscous materials [Batty and Bridson
2008], and two-phase flows [Boyd and Bridson 2012].

Traditionally, Cartesian grids are very popular for fluid simulations.
The Marker-And-Cell (MAC) approach [Harlow and Welch 1965],
which stores velocity components at cell faces and pressure sam-
ples at cell centers, results in discretizations with good properties in

terms of stability and accuracy. An inherent difficulty is that sim-
ulations on regular grids become prohibitively expensive for large
resolutions. Thus, many works have proposed methods to focus the
computations on regions that are of particular interest. One exam-
ple are octrees, which were used by Losasso et al. [2004; 2005] to
refine the computational grid in a controllable way. This approach,
however, suffers from numerical diffusion and an inconsistent dis-
cretization near the tree’s T-junctions. Targeting a similar direc-
tion as our work, Hong et al. [2009] and Ando et al. [2012] have
demonstrated methods to adapt the resolution of FLIP particles in a
simulation. Both methods, in contrast to ours, focus on static com-
putational grids and are restricted to smaller differences in particle
size.

Although Cartesian grids are widely used, they are limited in their
flexibility to adapt to a simulation setup. Because of this, tetrahe-
dral grids are popular for methods targeting adaptivity. In combina-
tion with a suitable method to discretize the problem at hand, they
allow for very flexible computational grids. One example is the
work of Klingner et al. [Klingner et al. 2006] which demonstrated
the use of a Stable Fluids based solver for tetrahedral grids con-
forming to object boundaries. Another example is the non-linear
fluid solver developed by Mullen et al. [2009], which leads to an
energy conserving solve. Unlike these methods, we make use of
a non-conforming grid with Body-Centered Cubic (BCC) lattices.
These meshes were also used by Chentanez et al. [2007] and by
Batty et al. [2010] for liquid simulations. We will denote this class
of algorithms as Finite Volume Methods (FVM). These methods
are primarily suitable for uniformly sampled particles, and we will
demonstrate in Section 7 that their placement of pressure samples
at tetrahedral circumcenters leads to numerical problems in combi-
nation with graded BCC meshes.

Another direction of research performs fluid simulations based on
arbitrary elements. Clausen et al. [2013] and Misztal et al. [2010]
have proposed a method to simulate liquids with a computational
grid conforming to a triangulation of a liquid surface. Both meth-
ods lead to an increased computational cost in comparison to the
more efficient tetrahedral BCC meshes. Sin et al. [2009] pro-
posed an alternative method for hybrid Lagrangian-Eulerian solvers
which combines a Voronoi-based pressure solver and particles. Us-
ing this Vornoi-based approach for tetrahedral meshes would yield
a pressure matrix similar to ours. Like our method, Brochu et
al. [2010] used this discretization in combination with embedded
second-order boundary conditions. Both of these approaches dis-
cretize velocities with per-face flux values, while we store velocity
vectors at cell barycenters.

Adaptive simulations have also been explored in the context of SPH
simulations without Eulerian grids. The work of [Adams et al.
2007] shares similarities with our approach, as it is able to simulate
a wider range of particle radii, and it proposes a surface reconstruc-
tion method in the adaptive setting. We will show in Section 5 that
our surface creation method results in surfaces with fewer visual
artifacts. Additionally, a robust and efficient method for adaptive
SPH simulations was introduced by Solenthaler et al. [2011], but
this work primarily targets the coupling of two different particle
resolutions.

Several other methods have been proposed to reconstruct smooth
surfaces around collections of particles without orientation. One
approach that is commonly used is to compute a signed distance
function with averaged particle radii and centroids [Zhu and Brid-
son 2005]. A variant of this approach, taking into account informa-
tion about the spatial variance of the particle’s neighborhood was
proposed by Yu et al. [2010]. Both methods primarily target parti-
cles with constant radius. More recently, a level-set based method
was proposed that computes a constrained optimization with bihar-
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monic smoothing [Bhattacharya et al. 2011]. However, such an op-
timization would be complicated to apply in our unstructured set-
ting. In contrast to these methods, our approach for surface cre-
ation computes the union of convex hulls around triplets of parti-
cles, which leads to a smooth and closed surface around a collection
of arbitrarily sized particles.

3 Fluid Solver

The aim of our method is to solve the Navier-Stokes equations,
which for incompressible, Newtonian, inviscid flows can be written
as ρDu/Dt = −∇p+ f , with the additional constraint∇ · u = 0
to enforce a divergence-free velocity field. Here, u, p and f denote
velocity, pressure and external forces, respectively, whileD/Dt de-
notes the material derivative. The density ρ is constant in our case.
We solve these equations using operator splitting [Stam 1999], and
a level set φ(x) = 0 defines the position of the liquid-gas interface.

Spatial Discretization An inherent strength of the FLIP algo-
rithm is its hybrid nature. The motion of the fluid is computed in
a Lagrangian manner using particles, while the pressure projection
step is computed on an Eulerian grid. We will now describe how we
compute the pressure projection using a tetrahedral discretization.
This projection of the velocities into a divergence-free state can be
formulated as the Poisson problem

∆t

ρ
∇2p = ∇ · u∗, (1)

where u∗ denotes an intermediate velocity after the advection. In
the following, however, we prefer an alternate view that looks at
this problem from an energy minimization perspective: we want to
compute the minimal change in kinetic energy necessary to reach a
divergence-free state of the flow similar to [Batty et al. 2007]. This
can be formulated as:

p = arg min
p

∫
Ω

1

2
||u∗ − ∆t

ρ
∇p||2 ρdV (2)

Here, Ω represents the domain of the computational grid, and we
choose to discretize this space using tetrahedral cells. This has the
advantage of giving us a natural way to handle cells of different
size, while yielding a consistent discretization of the differential
operators involved. We store pressure samples at the nodes of the
tetrahedral mesh, while velocities are stored at cell centers. This
configuration is illustrated in Figure 2. Note that by assuming a
piece-wise constant velocity and a linear change of pressure within
a cell, this setup results in a constant pressure gradient per tetrahe-
dron, by construction. In the following, we denote the number of
cells with m and the number of nodes with n, and we indicate dis-
cretized quantities with caret notation. Based on this representation
we can discretize Eq. (2) with

p̂ = arg min
p̂

m∑
i

1

2
||û∗i −

∆t

ρ
[∇]p̂||2 ρVi , (3)

where we denote the volume of a cell with Vi and the discretized
gradient operator with [∇]. It consists of am×nmatrix, computing
a per-tetrahedron gradient from nodal values. Consequently, we
define the divergence operator to be the transpose of the discretized
gradient. Before we go ahead to define [∇], we want to outline the
rest of the steps for our pressure solve. We solve equation Eq. (3)
with the commonly used least squares technique, yielding

∆t

ρ
[∇]TV [∇]p̂ = [∇]TV û∗, (4)

Figure 2: Our discretization compared to previous approaches:
the MAC grid stores velocity components normal to faces and pres-
sure values at the center. The FVM discretizations follow along
these lines and store velocities normal to faces and pressure val-
ues at the circumcenter of a cell. In our approach we store a 3-
component velocity vector at the barycenter of a cell and pressure
values at each node.

where V denotes a matrix containing the Vi as diagonal entries.
The [∇]T [∇] matrix-matrix multiplication results in a square n×n
matrix, which is symmetric and positive definite. In the following,
we will denote the matrix on the left hand side of Eq. (4) as A.
Given appropriate boundary conditions, we can use standard tools,
such as a commonly used pre-conditioned conjugate gradient solver
to compute a solution (we use the one suggested in [Bridson 2008]).

Now, all that is left to construct the left-hand side matrix and the
right-hand side terms for Eq. (4) is to define [∇]. As we assume
a linear change of the pressure for each cell, we can use simple
barycentric interpolation to retrieve the pressure p̂ at a position in-
side a cell. Given the nodal pressure values p1..4 and barycentric
weights σ1..4 this means p̂ = σ1p1 + σ2p2 + σ3p3 + σ4p4. In
line with finite element methods using linear elements, we define
the gradient based on the partial derivatives of the barycentric in-
terpolation. E.g., the first component of the gradient for a cell is
computed with

∂

∂x
p̂ =

∂σ1

∂x
p1 +

∂σ2

∂x
p2 +

∂σ3

∂x
p3 +

∂σ4

∂x
p4 . (5)

To set up the final linear system of Eq. (4) for the pressure solve, we
loop over all tetrahedra to compute the derivatives of the barycentric
interpolation, adding their contributions to the global matrix.

In contrast to previous work, our pressure solve is a linear system
that has n degrees of freedom, n being the number of nodes in
the tetrahedral mesh. For our BCC mesh, n is in practice smaller
than the number of tetrahedra m (by a factor of 6 on average). A
direct implication of this smaller linear system is that it is faster
to solve. A second, less obvious implication of the smaller lin-
ear system is that it effectively prevents artifacts known as locking.
These artifacts are commonly observed in finite element methods
for problems in elasticity. Different methods have been proposed
to circumvent these problems, e.g., using linear elements for pres-
sure instead of piece-wise constant ones [Irving et al. 2007]. Other
works explicitly smooth the pressure field to reduce locking prob-
lems [Misztal et al. 2010]. In general, locking can be observed if the
pressure basis can represent more, and higher-frequency, functions
than the basis for the velocity. Thus, choosing a more restrictive
basis for pressure, as in [Irving et al. 2007], or explicitly removing
high-frequency information from the pressure [Misztal et al. 2010],
reduces the chance of locking. Our method, by construction, has
more degrees of freedom for representing velocity fields than pres-
sure fields. Although we cannot prove that a local configuration
over-constraining the velocities will never occur, the larger number
of degrees of freedom for our velocities effectively prevents locking
artifacts, and we have not encountered any in our tests.

Boundary Conditions Second-order boundary conditions are a
central component for accurate and visually appealing simulations
with non-conforming grids. Achieving second-order accuracy for
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obstacle boundary conditions is straightforward with our discretiza-
tion: we can rely on the formulation of previous work [Batty et al.
2007], and set the volume of a cell Vi in Eq. (4) to the volume that
is filled with fluid.

For the free surface, we have to ensure that the Dirichlet boundary
condition p = 0 is satisfied at the interface position. Usually, this
means computing a pressure value for nodes outside of the liquid
so that a linear interpolation along an edge of a cell gives zero at
the correct position [Enright et al. 2005; Lew and Buscaglia 2008].
Considering two pressure samples along an edge, we’ll denote val-
ues inside the air with a G subscript, and values inside the liquid
with an L subscript in the following. For a Cartesian MAC grid, the
ghost pressure value pG is given by pG = pLφG/φL. In our case,
however, this approach does not yield the desired result. The reason
is that our velocity samples are not in line with the direct connec-
tions of the pressure samples – they are not locally orthogonal to
each other. Instead, we have to ensure the boundary conditions re-
sult in the correct pressure value at the cell center. In the following
we will show how to derive suitable free-surface boundary condi-
tions to ensure second-order accuracy within our framework.

In order to achieve accurate and smooth surface motions with our
method, we compute the ghost pressure values pG with a linear
combination of liquid pressure values as:

pG = w1p1 + w2p2 + w3p3 , (6)

where wn and pn denote unknown coefficients and adjacent liquid
pressures in the same tetrahedron. Note that for pi that are not
inside of the liquid, we set wi = 0. In line with the traditional
ghost fluid method, we define pG uniquely for each tetrahedron. To
handle the most general case, let’s suppose that p1..3 are all liquid
pressure values. Once we have a value for pG, we can compute a
pressure gradient for the tetrahedron and update the velocity at its
center with:

ûnew = û∗ − ∆t

ρ
[∇]
[
pG p1 p2 p3

]T (7)

In order to do this we need to compute the coefficients wn. pG
can be rewritten in terms of a barycentric interpolation of the three
values in the liquid as:

pG = p̃LφG/φ̃L (8)

with φ̃L = θ1φ1 + θ2φ2 + θ3φ3, and p̃L = θ1p1 + θ2p2 + θ3p3.
Here the θn are a set of barycentric coordinate coefficients such that
θ1+θ2+θ3 = 1, and a tilde superscript denotes a value interpolated
with the barycentric weights. Substituting Eq.8 into Eq.6 yields

wn = θnφG/φ̃L . (9)

That means the values wn are determined by those of the θn coef-
ficients, which we will compute in the following. Note that, theo-
retically, θn could take any values as long as they add up to one.
Before embedding the boundary conditions, the matrix entries of
the pressure solve for a single tetrahedron are, according to Eq. (4),
given by ∆t

ρ
[∇]TV [∇]p = b. The computation of the ghost fluid

values is independent of the right-hand side b, so we will restrict
the discussion to the left hand side. We denote the components of
the local symmetric 4× 4 matrix on the left hand side with:λ1 α β γ

α λ2 a b
β a λ3 c
γ b c λ4

 (10)

Assuming, without loss of generality, that the first vertex is the one
outside of the liquid volume, we embed the boundary condition into

M based on the wn coefficients. Then the first row of the system is
changed to:1 −w1 −w2 −w3

α λ2 a b
β a λ3 c
γ b c λ4


pGp1

p2

p3

 =

 0
b1
b2
b3

 . (11)

We can extract two constraints for each θn from this form, which,
together with the barycentric coefficient constraint, give us a 3× 3
matrix M ′ that can be inverted analytically. A full derivation of
these steps can be found in Appendix A. With this analytic expres-
sion we can compute the ghost pressure coefficients as:

w =
φG/φ̃L

α+ β + γ

αβ
γ

 (12)

This boundary condition ensures second-order accuracy while
maintaining symmetry when it is assembled into the matrix of
Eq. (4). If the quality of a tetrahedron is good, 0 < θn < 1 is
guaranteed. In this case, the resulting matrix is symmetric positive-
definite and can be easily inverted by the commonly used precondi-
tioned conjugate gradient methods. However, positive off-diagonal
terms of the matrix can result in values of θ outside of the range
[0, 1], leading to an indefinite linear system. In these cases we con-
sider the tetrahedron to have a poor quality. When using ghost fluid
boundary conditions with a regular MAC grid, it is common prac-
tice to clamp small values in the denominator of Eq. (9) to prevent
ill-conditioned pressure matrices. Effectively, this means reverting
to first-order accuracy when second-order accuracy is intractable.
We implement a similar step in our algorithm to overcome numeri-
cal problems resulting from badly shaped cells. We check whether
the ghost fluid boundary conditions would violate diagonal domi-
nance of an equation in our linear system. If we detect such a case,
we smoothly transition to first order accuracy. Specifically, when
we have computed M ′, we check if a resulting diagonal term M ′i,i
is smaller than ϕλ2..4. Here, ϕ denotes a tolerance factor that we
set to ϕ = 0.25. Whenever we detect such a case, we compute a
coefficient k with

k = min
(ϕ− 1

w2α
λ2,

ϕ− 1

w3β
λ3,

ϕ− 1

w4γ
λ4

)
, (13)

and multiply each wn with k when embedding. Note that this scal-
ing does not break the symmetry of the resulting linear system.
More specifically, for k = 1 this yields full second-order accuracy,
while for badly shaped tetrahedra the resulting k = 0 means that
we revert to the standard rounding strategy of a first order accurate
method. With our BCC mesh, all regular BCC tetrahedra have very
good quality and valid θn values. The graded BCC tetrahedra, on
the other hand, can be of lower quality and can require the use of
Eq. (13). Luckily, in our tests these tetrahedra make up only a very
small fraction of the mesh.

Velocity Interpolation The FLIP advection step traces particles
based on the velocities from the Eulerian grid. For this we need to
construct a continuous velocity field based on the discrete values
in our tetrahedral mesh. As we store velocities at the cell centers,
the interpolation would ideally use the dual mesh consisting of the
Voronoi cells of each node [Brochu et al. 2010]. Unfortunately,
performing interpolations within arbitrary Voronoi cells would be
expensive and require a large amount of computation compared to
the other steps of our simulator. Instead, we have found the fol-
lowing approach to yield high speed and good accuracy: we first
interpolate the centered velocities to the nodes, similar to [Chen-
tanez et al. 2007]. Instead of interpolating these averaged values
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Figure 3: A simple geometric setup creating a big splash inside a container. This simulation, with a maximum resolution of 256 cells, took
1.3 minutes per frame on average.

directly (which would result in smeared out motion), we temporar-
ily subdivide the cells of our mesh by inserting a vertex at the center
where we have an accurate velocity sample.

We then perform barycentric interpolation based on these sub-
divided cells, ensuring a C0 continuous velocity that retains the
original velocities at cell centers. Note that these four smaller tetra-
hedra do not have to be stored explicitly. We construct them on the
fly when a sample is requested from one of the original cells.

Manipulating FLIP particles The spacing between FLIP parti-
cles may drift over time, and high-frequency errors may contribute
to a bumpy surface. We combat these problems by directly ma-
nipulating particle positions. During each time step, we apply the
position correction algorithm of Ando et al. [2012]; this algorithm
essentially pushes each particle away from its neighbors to prevent
clustering. We also introduce two special behaviors when the parti-
cles are close to the liquid surface (less than a distance of six times
the particle radius). First, we impose the constraint that the position
correction step may only move particles near the surface tangen-
tially to the fluid interface. Secondly, particles near the surface may
leave gaps when they spread out quickly. Our method naturally fills
in these gaps by slightly pulling each particle towards the fluid in-
terface. For particles near the interface, this pulling force acts in
addition to the position correction.

FLIP particles that partake in splashes and sprays can pose a sig-
nificant burden on computational resources, especially in an adap-
tive framework like ours. This inefficiency stems from the fact that
water droplets undergo extremely simple ballistic motion. Theoret-
ically, we know that such a small region with purely free-surface
boundary conditions will yield zero internal forces, so we simply
detect individual FLIP particles that have no neighbors within six
times their radius, remove them from the pressure solve, and ac-
celerate them with gravity instead. When these particles eventually
enter the neighborhood of other particles at some point in the fu-
ture, we resume treating them like fluid by returning them to the
pressure solve. This decision allows us to avoid aggressively refin-
ing the tetrahedral mesh in locations where the physical motion is
uninteresting. Only a small percentage of the particles are simu-
lated in this way, e.g., 1.7% on average for Figure 6.

4 Adaptivity

Our method achieves adaptivity by varying the mesh resolution over
the computational domain. Our FLIP simulation performs compu-
tation on both a background volumetric mesh and on a set of parti-
cles. Given a sizing function that indicates the desired spatial level
of detail, our method first creates a tetrahedral mesh with varying
spatial resolution, and then it locally changes the particle density by
splitting and merging operations.

To compute the spatially-varying background grid, we start with
the Delaunay tetrahedralization of a set of points distributed in a
body-centered cubic lattice configuration. In order to make the
mesh resolution change over space, we use the octree-based grading
method which was proposed by Labelle and Shewchuk [2007] and
later adopted in several adaptive simulation environments [Chen-
tanez et al. 2007; Wojtan and Turk 2008; Batty et al. 2010]. Similar
to [Batty et al. 2010], we generate a new tetrahedral mesh every
ten time steps, instead of rebuilding the mesh on every consecutive
step. Also, the tetrahedral mesh is only temporarily used for the
pressure solver, so no information is transferred from one time step
to the next by storing it on the grid. Thus, we do not worry about
re-sampling data when computing a new tetrahedral mesh.

We change the size and number of particles in our simulation with
splitting and merging operations. For this, we modify the strategy
of Ando et al. [2012] to work within our framework: at each re-
meshing step, we loop through the particles and determine whether
the resolution needs to be changed. If a particle is too small, then we
merge it with its nearest neighboring particle, resulting in a particle
whose radius is given by the combined volume of the two original
particles. If a given particle is bigger than the desired size, then the
particle is split in two. The two new particles are placed randomly
within the original particle’s radius and redistributed with a heuris-
tic that attempts to fill in nearby gaps: We first compute the 24 mid-
points mi between this particle and its 24 nearest neighbors. Then
we find the closest particle to each midpoint and store the squared
distance as a weight ωi. The new particle’s position is equal to the
weighted average of all nearby midpoints: xnew =

∑
ωimi/

∑
ωi.

After a split or merge operation, the new particle’s velocity is com-
puted using a volume-weighted average. Also, we must take care
to ensure that particles close to the surface do not introduce inter-
facial bumps when they split or merge; whenever we create a new
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a) c)b) d) e)

Figure 4: For the perfectly planar particle placement shown in (a), the methods [Zhu and Bridson 2005] (b), [Yu and Turk 2010] (c), and
[Adams et al. 2007] (d) do not result in a flat surface, while our method produces the desired result (e).

particle that is less than 1.25 times its radius away from the surface
(through either a split or a merge event), we move it in the surface
normal direction such that its sphere lies exactly tangent to the liq-
uid interface.

Numerical viscosity in fluid simulations is tightly coupled to the
spatial resolution resolving the flow. We compensate for spatially-
varying numerical viscosity caused by particles of various sizes in
our simulation by adjusting the PIC/FLIP blending parameter in
our FLIP simulation [Bridson 2008]. Given quantities Qi,PIC and
Qi,FLIP computed at particle i from PIC and FLIP simulations, re-
spectively, the new quantity Qi is computed as a weighted blend
between the two:

Qi =
ν∆t

r2
i

Qi,PIC + (1− ν∆t

r2
i

)Qi,FLIP (14)

where ri is the radius of particle i and ν is the viscosity of the flow.
We found that this strategy adequately eliminates any artifacts due
to spatially varying numerical viscosity.

Sizing Functions We define the level of detail in our simulations
with a spatially varying sizing function S(x). We have experi-
mented with several different sizing functions depending on factors
such as distance to a camera, distance to the liquid surface, curva-
ture of the liquid surface, measures of fluid turbulence, and arbitrary
analytical number fields. Our simulator is versatile enough to cope
with any of these sizing functions, resulting in efficient simulations
with highly variable levels of detail. E.g., Figure 1 showcases a
simulation where smallest and largest cells differ by a factor of 128.

In all of the examples in this paper, the sizing function is defined as
a combination of five different metrics:

S(x) = max ( d(x), V (x,min(κliquid(x), κsolid(x), e(x)) ) (15)

where x is the position of a point in space, and d(x) encodes the
depth of the liquid by returning the absolute level set value of the
liquid surface. This has the effect that motion near the surface has
higher priority than motions far inside the bulk volume of the liquid.
V (x, y) is a view-dependent function that returns the value y if x is
within the camera’s visible region and returns the maximum parti-
cle radius rmax (representing the minimum surface resolution) oth-
erwise. The next two metrics are designed to prioritize geometric
detail of the liquid surface and of obstacles by computing a desired
resolution based on cuvature. κliquid(x) returns 0.8 divided by the
extrapolated curvature of the liquid interface. Similarly, κsolid(x)
returns 1.6 Wsmooth(dsolid, rmax) divided by the extrapolated curva-
ture of the solid interface, where Wsmooth(x, h) is a smooth kernel
function (1 − ||x||2/h2)3 and dsolid is the closest distance to the
solid boundary. As a last component of our sizing function we
found it beneficial to invest computational resources into keeping
interesting motion of the flow field alive. Inspired by turbulence
models (used e.g. in [Pfaff et al. 2010]), we have found that the
strain tensor of the flow field reliably indicates detailed motions,

and we compute e(x) as 30 divided by the Frobenius norm of the
fluid strain tensor computed from the velocity field.

5 Surface Representation

We also introduce a new method for computing an implicit surface
from a set of particles. Given our set of FLIP particles with variable
radii, we aim to implicitly represent the fluid surface by computing
its signed distance function. Several useful methods for computing
a surface from a collection of particles have been proposed in the
past [Zhu and Bridson 2005; Adams et al. 2007; Yu and Turk 2010],
but they tend to produce undesirably bumpy surfaces when consid-
ering particles of highly variable radii (Figure 4). In this section,
we introduce a new strategy for computing an implicit surface from
a set of particles of various sizes.

The main idea is to approximate the fluid surface with the union
of the convex hulls of each triplet of nearby particles close to the
surface. For each set of three FLIP particles near the surface, the
convex hull forms a thickened triangle shape with rounded edges
(Figure 5). We only consider particles that are less than a given dis-
tance apart, with the maximum distance equal to a constant scale
factor l times the sum of the two particle radii. A small l shows
more surface details, while a larger l tends to fill in small concavi-
ties. We used l = 2 for most of the simulations in this paper. We ul-
timately represent our surface as the union of all such local convex
hull shapes, and the minimum signed distance from these shapes to
a point in space defines the outer part of our level set function.

In practice, we compute the local convex hull by finding the two
outermost planes tangent to a set of three spheres. We efficiently
compute the distance to these planes by analytically solving the
polynomial system: ax1+by1+cz1+d = r1 , ax2+by2+cz2+d =
r2 , ax3 + by3 + cz3 + d = r3 , a2 + b2 + c2 = 1 . where ri
and xi, yi, zi are the radius and x, y, z coordinates of particle i, re-
spectively. a, b, c, d are the variables defining our plane with the
signed distance function ax+ by+ cz+d = 0. Intuitively, the first
three equations ensure that the plane is the right distance away from
each particle with the normal facing away from them, and the final
equation ensures that the plane equation is normalized to a distance
function. These four equations represent the intersection of three
hyperplanes and a hypercylinder in 4D {a, b, c, d} space. We solve
this system analytically by first finding the line of common inter-
section of the first three equations, and then intersecting this line
with the cylinder represented by the final equation. The system has
two solutions, representing the top and bottom planes of our convex
hull shape.

The above calculation describes how to find the planar regions of
the convex hull of a set of three spheres. By computing the conic
and spherical convex hull facets (Figure 5, bottom right) in a similar
fashion, we can easily compute the signed distance between this
convex hull and a point in space. To evaluate our final level set
value, we compute the minimum signed distance from a query point
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Figure 5: The 2D version of our surface creation algorithm takes
a pair of particles (top left) and computes their convex hull (bottom
left). In 3D, we convert three nearby particles (top right) into a
convex hull (bottom right) consisting of spherical (orange), conic
(dark blue), and planar (light blue) segments.

to all nearby convex hulls. We evaluate the level set on each of
the vertices of our adaptive BCC mesh, and we extract a triangle
mesh using a marching tetrahedra algorithm. We then perform a
light mesh smoothing to increase the reliability of any curvature
computations.

The algorithm as described works perfectly for computing the level
set outside of our particle surface, but it may lead to small gaps in-
side. To avoid the creation of holes, we temporarily reassign each
particle’s radius: rtemp

i = max(ri,−kφi) where φi is the particle’s
stored level set value from the previous time step, and k is a con-
stant set to 0.75 in our simulations. Using this temporary radius to
compute the signed distance as described above will remove erro-
neous gaps inside the liquid.

We need to compute liquid surfaces both for final visualization as
well as for several calculations during the progress of our simula-
tion. For the final visualization, we compute an especially high-
resolution BCC mesh from all of our particles and proceed with the
algorithm above. The final surface creation is trivially parallelized,
and takes around five minutes average per frame for all of our simu-
lations. We attempt to speed up the surface creation routine used for
simulation computations by computing on the moderate-resolution
BCC mesh used for simulation and ignoring ballistic particles (Sec-
tion 3). We compare our surface creation routine with a few existing
methods in Figure 4. Most previous algorithms perform poorly in
this comparison because they were not designed for particles with
varying radii.

6 Implementation

At this point we have described all of the components of our sim-
ulator. The resulting algorithm can be seen in Algorithm 1. In the
beginning of each step (line 2), we typically compute the level-set
for the current particle configuration as described in Section 5. We
require the distance to the surface in several steps of our algorithm,
so we store the level set values for each particle (line 3). When
enough time has passed to trigger an update of the mesh, it becomes
necessary to evaluate the sizing function. At this point, additional
user-defined sizing functions could be computed as well. Having
the information from the sizing functions ready, we create a new
BCC mesh and perform particle merging and splitting.

For mapping the particle velocities onto the grid (line 9) we use an
SPH-like kernel function, which is weighted by the particle volume:
max(vi(4r

2
i /d

2 − 1), 0), where vi is the particle volume and d is

Algorithm 1: One step of our simulation algorithm.

1 begin
2 Compute simulation surface S
3 Pre-compute φ for all particles
4 Correct particle positions xi
5 if Mesh update necessary then
6 Evaluate sizing function S(x) at xi
7 Build octree and BCC mesh
8 Merge and split particles

9 Compute mesh velocity û from particle velocities
10 Extrapolate û outside the liquid
11 Solve pressure p̂ on the tetrahedral mesh, update û
12 Update particle velocities with gradient of p̂
13 Advect particles with û

the distance to the particle center normalized with its radius. The
particle velocity update of line 12 uses barycentric interpolations as
explained in Section 3. Likewise, the grid-based velocity extrapo-
lation of line 10 uses the nodal velocities of Section 3. A time step
is completed by performing the pressure projection and advecting
the particles in the resulting divergence-free velocity field.

7 Results and Discussion

To evaluate the performance and robustness of our method in com-
parison to previous work we have performed an extensive series of
tests. A selection of these can be found in the accompanying com-
parison video. One comparison that is particularly interesting is the
one comparing our method to an FVM based simulation. Using a
graded BCC mesh leads to problems with the latter, as the position
of the circumcenter lies exactly on a face for the graded tetrahe-
drons. In the graded region, this can result in two pressure samples
from adjacent tetrahedra being placed at the exact same position. To
alleviate this problem, [Batty et al. 2010] propose to slightly offset
the pressure samples from the faces. However, our implementation
of their method exhibited slow convergence and the velocity arti-
facts despite this fix. The influence of the different components of
our sizing function on the evolution of a simulation is difficult to
depict with static images, so we refer to the accompanying video
for a comparison.

To evaluate the basis of our adaptive model without any influence
of the camera dependent sizing function, we have simulated the
simple geometric configuration shown in Figure 3. For this setup,
resolutions from 8 to 256 were used, resulting in 6 levels of adaptiv-
ity. Timing information for the main steps of our algorithm over the
course of this simulation can be found in Figure 8 and Figure 9. For
this simulation, the initial configuration consisted of 168, 161 parti-
cles, and momentarily peaked up to 1, 048, 776 during the maximal
extent of the splash (settling down again to around 250 thousand in
the end). Note that a full sampling of the initial configuration with
a regular grid would have required approximately 6 million parti-
cles. Our measurements show that the run-time of our method has
a strong linear relationship to the number of particles, and thus the
visual complexity of the simulation. The per-frame time is low at
the beginning and end of the simulation, but strongly peaks during
the complex splash in its middle.

Our visibility sizing function is highlighted by the setup shown in
Figure 6. Here the computational resources are focused on the vis-
ible region of a rotating camera, as the liquid splashes around a
U-shaped corridor. Our solver efficiently resolves the complex mo-
tion near the camera, while effectively reducing the computational
cost for parts that are not visible. The simulation of Figure 7 shows
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Figure 6: Our visibility sizing function: as the liquid flows along the U-shaped corridor, the visible volume is simulated with a high resolution
(surface shown in top row), while regions outside of the view frustrum are coarsened (particle view in bottom row).

Setup Min. ∆x−1 Min. ∆x−1
s Max. ∆x−1 Duration frames

Figure 3 8 16 256 5h:09m 240
Figure 6 16 32 256 4h:26m 330
Figure 7 16 64 512 5h:55m 480
Figure 1 8 32 1024 12h:8m 160

Table 1: Resolutions and running times for our simulations (not in-
cluding final surface creation). Here, ∆x−1 and ∆x−1

s denote the
number of BCC cells along one spatial axis for the simulation and
for the surface generation, respectively. The simulations were run
on a workstation with an Intel Core i7-3960X CPU with 3.30GHz
running under Linux.

a liquid interacting with a highly detailed obstacle. The κsolid com-
ponent of our sizing function ensures that geometrically complex
regions near the obstacle are simulated with higher accuracy. In this
way, we can resolve the detailed flow of liquid through the holes in
the obstacle.

Figure 1 shows a situation that would be challenging to simulate
with a regular solver. Without adaptivity, the large open liquid
surface with complex splashes in a localized region would require
huge amounts of computational resources. Our method can simu-
late this setup very efficiently, and in a fully coupled manner with
an effective high resolution. The large open region is successfully
coarsened by our sizing function, resulting in subtle wave motions
around the splashes. In this case, the whole simulation with 8 dif-
ferent octree levels and a maximum resolution of up to 1024 cells
took on average only 4.6 minutes per frame to compute. Just to
illustrate the amount of detail in this setup – our adaptive version
initially used 1.7 million particles, while a regular sampling at the
finest resolution would have required roughly 400 million. Further
runtime and resolution details for our simulations can be found in
Table 1.

Discussion We found our discretization (Section 3) beneficial in
a number of ways. We store the pressure variables on tetrahedral
vertices, and there are far fewer vertices than tetrahedra in a given
mesh. Consequently, the pressure solve has fewer variables and
is faster to solve. Also, by counting degrees of freedom and con-
straints, we can see that our discretization prevents the locking ar-

Figure 8: This graph shows durations for the different parts of our
algorithm over the course of the simulation from Figure 3. Note that
we only include the computationally more expensive steps here, and
not the re-meshing (which is done in intervals).

Figure 9: The time required for our re-meshing and particle merg-
ing & splitting computations over time for Figure 3. Note that we
perform them only every ten simulation steps.

tifacts which are common in other methods. However, the lower
number of pressure constraints also implies that the highest fre-
quencies of the velocity field may be unconstrained. In our case
a regularization via PIC interpolation acts to diminish any high-
frequency artifacts.

Our method uses a FLIP scheme instead of a purely Eulerian
method. We store all physical variables on the FLIP particles,
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Figure 7: A simulation of detailed flow through a complex obstacle. The liquid correctly flows through the orifices at the center of the filigree.

so information is carried from one time step to the next in a La-
grangian manner. As a result, we are allowed to aggressively re-
mesh the tetrahedral background grid without worrying about ex-
cessive damping or re-sampling artifacts. On the other hand, FLIP
simulations have a well-known problem of creating noisy particle
distributions, because there are typically several times more par-
ticles than velocity variables on the background grid. We utilize
particle repositioning to improve the distribution quality, at the ex-
pense of slight inaccuracies due to displacing physical variables.

We noticed that our new surface creation routine is essential for
maintaining detailed simulations in the presence of accurate free-
surface boundary conditions. One major benefit of our method is
that it can easily create perfectly flat surfaces from a mixture of
differently-sized particles. These flat surfaces represent the equi-
librium state of a fluid simulation, so our animations are able to
smoothly settle down as time progresses. Without a method for
accurately reproducing flat surfaces, second-order boundary con-
ditions will introduce additional forces in the locations of surface
bumps, which artificially prevent a simulation from settling down.
While we believe that our surface creation routine is indispensable,
it is quite expensive to compute. In the future we would like to
optimize the surface computation.

Our simulations perform quite well for large differences in resolu-
tions, but we have only been able to push them to a certain point
in our current implementation. We found that using too sharp of a
grading in our sizing function can place coarse and fine simulation
elements too close together and potentially result in artifacts. For
example, when small particles land in very coarse cells after violent
splashes, these particles can get stuck in mid air. Occasionally, this
can also lead to an overly strong weight for such particles during
the velocity mapping, resulting in momentum artifacts. Our adap-
tive numerical viscosity in Eq. (14) can also exhibit dangerously
small damping values for very fine resolutions, so we clamped the
blending coefficient to a minimum value of 0.1 in Figure 1.

In Section 4 we introduced a novel collection of sizing functions for
adaptively selecting details from a fluid simulation. While we pre-
sented specific parameters for the sake of reproducibility, these val-
ues were not meticulously tuned and are certainly not optimal. The
task of choosing an ideal sizing function is still an open problem
that we are interested in pursuing in the future. In particular, we are
interested in taking more temporal information into account. This
could lead to more gradual changes in resolution, at the expense of
a slightly higher particle count.

8 Conclusions and Outlook

We have presented a novel framework for highly adaptive liquid
simulation. In our method, a novel, robust discretization works to-
gether with accurate embedded boundary conditions and a flexible
sizing function to allow for aggressive adaptivity and high compu-
tational performance. In this way, we can efficiently compute tough
simulation setups, such as large surfaces with very localized details.

We have additionally presented a novel surface creation method that
yields smooth surfaces in the presence of strongly varying particle
radii, which turned out to be an important building block for our
framework.

We chose a BCC mesh generation because it is, to the best of our
knowledge, the fastest way to generate high-quality meshes. How-
ever, despite its efficiency, mesh generation is still a bottleneck for
our simulation. This is partly due to the fact that it is a mostly se-
rial operation that is difficult to parallelize (most other steps of our
algorithm parallelize easily). So, instead of computing the mesh
from scratch each time, we are interested in exploring techniques
for continuous re-meshing. Also, our choice of piece-wise constant
basis functions for velocity indicates that our discretization could
lead to difficulties when it is used for diffusion or viscosity solves.
It will be interesting to see how these could be incorporated into
our framework. Finally, we are highly interested in applying our
method to other types of phenomena, such as smoke and fire sim-
ulations, or visco-elastic materials. It will be very interesting to
leverage the benefits of our framework for extreme adaptivity in
these situations.
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A Ghost Fluid Coefficients

Here we describe how to compute the ghost fluid coefficients θn
given the 4× 4 pressure matrix entries of a single tetrahedron. Re-
organizing Eq. (11) gives:[

λ2 + αw1 a+ αw2 b+ αw3

a+ βw1 λ3 + βw2 c+ βw3

b+ γw1 c+ γw2 λ4 + γw3

][
p1

p2

p3

]
=

[
b1
b2
b3

]
. (16)

Note that each of the θn has two degree of freedom, and thus each
wn also has two degrees of freedom. As we know that the result-
ing matrix needs to be symmetric, which gives us the following
constraints: a + αw2 = a + βw1, b + γw1 = b + αw3, and
c+βw3 = c+ γw2. As the wn linearly depend on θn, that means:
αθ2 = βθ1, γθ1 = αθ3, and βθ3 = γθ2. When we re-write these
constraints in matrix form, and include the barycentric coordinate
constraint θ1 + θ2 + θ3 = 1 we get the following linear system:−β α 0

γ 0 −α
0 −γ β
1 1 1

[θ1

θ2

θ3

]
=

0
0
0
1

 (17)

As the rank of top three rows of the matrix is 2, we can drop one of
them. Removing the first row from the system gives us the follow-
ing full-rank, 3× 3 matrix:[

γ 0 −α
0 −γ β
1 1 1

][
θ1

θ2

θ3

]
=

[
0
0
1

]
(18)

The analytical solution of this system is:[
θ1

θ2

θ3

]
=

1

α+ β + γ

[
α
β
γ

]
. (19)

This means that for our discretization, the ghost pressure coeffi-
cients θn are given by the tetrahedron’s matrix entries from Eq.10.
More specifically, by those for the vertex that is located outside of
the liquid, i.e., α, β and γ.

Substituting this equation into Eq.9 and Eq.6 yields the final equa-
tion for the ghost pressure Eq. (12).
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